LOYOLA-ICAM COLLEGE OF ENGINEERING AND TECHNOLOGY (LICET)
Loyola Campus, Nungambakkam, Chennai – 600034Image Understanding Systems can help us a lot
Eg. Cheques, Number Plates, Passports
"the field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel
In Simpler Terms, Decision Making without if-else statements
This is what the computer sees
Possible Solutions
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[1] | A Two Stage Recognition Scheme for Handwritten Tamil Characters | U. Bhattacharya, S. K. Ghosh and S. K. Parui |
|
|
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[2] | Translation and Scale Invariant Recognition of Handwritten Tamil Characters Using a Hierarchical Neural Network | T.Paulpandian and V.Ganapathy |
|
|
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[3] | Handwritten Character Recognition of South Indian Scripts: A Review | Jomy John, Pramod K. V, Kannan Balakrishnan |
|
|
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[4] | A Novel SVM-based handwritten Tamil character recognition system | Shanthi N, Duraiswami K |
|
|
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[5] | Offline Tamil Handwritten Character Recognition Using Sub Line Direction and Bounding Box Techniques | S. M. Shyni, M. Antony Robert Raj, S. Abirami |
|
|
Ref.No | Reference Paper | Authors | Findings | Cons |
---|---|---|---|---|
[6] | A survey on Tamil handwritten character recognition using ocr techniques | Antony Robert Raj M, Abirami S |
|
|
Ref.No | Reference Paper | Authors | Findings |
---|---|---|---|
[7] | Imagenet classification with deep convolutional neural networks | A. Krizhevsky, I. Sutskever, and G. E. Hinton |
|
Ref.No | Reference Paper | Authors | Findings |
---|---|---|---|
[8] | Very deep convolutional networks for large-scale image recognition | K. Simonyan and A. Zisserman |
|
Online Courses
Manual Feature Extraction Required
Manual Feature Extraction NOT Required
System = API + ipython notebook client
# Now Start training by a creating a ConvNet Instance
from ConvNet import ConvNet
net = ConvNet()
model = net.fit(X_tr, y_tr, X_val, y_val, X_ts, y_ts)
Number of Iterations | Learning Rate | Regularization (L2) | Validation Accuracy |
---|---|---|---|
1500 | 1 x 10-7 | 5 x 10-9 | 0.02 |
1500 | 0.001 | 0.5 | 0.198 |
1500 | 0.001 | 0.1 | 0.359 |
10,000 | 0.001 | 0.1 | 0.6036 |
15,000 | 0.001 | 0.1 | 0.578 |
10,000 | 0.01 | 0.1 | 0.472 |
Number of Iterations | Number of Hidden Units | Learning Rate | Regularization (L2) | Batch Size | Validation Accuracy |
---|---|---|---|---|---|
1500 | 1000 | 0.1 | 0.1 | 200 | 0.25 |
10,000 | 1000 | 0.1 | 0.01 | 200 | 0.67 |
10,000 | 1000 | 0.1 | 0.001 | 200 | 0.69 |
20,000 | 1000 | 0.1 | 0.001 | 200 | 0.693 |
10,000 | 2000 | 0.1 | 0.001 | 200 | 0.704 |
10,000 | 2000 | 0.1 | 0.0001 | 200 | 0.695 |
Number of Epochs | Learning Rate | Momentum | Batch Size | Dropout | Validation Accuracy |
---|---|---|---|---|---|
165 | 0.1 | 0.7 | 300 | Input + first hidden layer | 0.02 |
165 | 0.01 | 0.3 | 300 | Input + first hidden layer | 0.727 |
400 | 0.01 | 0.7 | 300 | Input + first hidden layer | 0.77 |
165 | 0.01 | 0.7 | 300 | Input + first hidden layer | 0.02 |
500 | 0.01 | 0.8 | 300 | Input + first hidden layer | 0.844 |
500 | 0.01 | 0.8 | 300 | All | 0.772 |
Number of Epochs | Learning Rate | Momentum | Batch Size | Dropout | Validation Accuracy |
---|---|---|---|---|---|
500 | 0.001 | 0.8 | 300 | FC_1 at 50% | 0.9253 |
500 | 0.01 | 0.5 | 300 | Max_pool_2 at 50%, FC_1 at 50% | 0.9503 |
The HPL isolated handwritten Tamil character dataset - contains approximately 500 isolated samples each of 156 Tamil “characters”
Training and Test set accuracy -
mean(prediction == actual) * 100